
LETTER Communicated by Xiao Fu

Accelerating Nonnegative Matrix Factorization
Algorithms Using Extrapolation

Andersen Man Shun Ang
manshun.ang@umons.ac.be
Nicolas Gillis
nicolas.gillis@umons.ac.be
Department of Mathematics and Operational Research, Faculté Polytechnique,
Université de Mons, 7000 Mons, Belgium

We propose a general framework to accelerate significantly the algo-
rithms for nonnegative matrix factorization (NMF). This framework is
inspired from the extrapolation scheme used to accelerate gradient meth-
ods in convex optimization and from the method of parallel tangents.
However, the use of extrapolation in the context of the exact coordinate
descent algorithms tackling the nonconvex NMF problems is novel. We
illustrate the performance of this approach on two state-of-the-art NMF
algorithms: accelerated hierarchical alternating least squares and alter-
nating nonnegative least squares, using synthetic, image, and document
data sets.

1 Introduction

Given an input data matrix X ∈ R
m×n and a factorization rank r, we consider

in this letter the following optimization problem:

min
W∈Rm×r,H∈Rr×n

||X − WH||2F such that W ≥ 0 and H ≥ 0. (1.1)

This problem is referred to as nonnegative matrix factorization (NMF) and
has been shown to be useful in many applications, such as image analy-
sis and document classification (Lee & Seung, 1999). Note that there exist
many variants of equation (1.1) using other objective functions and addi-
tional contraints or penalty terms on W and H (see Cichocki, Zdunek, Phan,
& Amari, 2009; Gillis, 2014, 2017; and Fu, Huang, Sidiropoulos, & Ma, 2018,
for more details about NMF models and their applications).

1.1 Algorithms for NMF. The focus of this letter is algorithm design
for equation 1.1. Almost all algorithms for NMF use a two-block coordinate
descent scheme by optimizing alternatively over W for H fixed and vice
versa (see algorithm 1). By symmetry, since ||X − WH||F = ||XT − HTWT ||F ,
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the updates of W and H are usually based on the same strategy. Looking
at the subproblem for H, the following nonnegative least squares (NNLS)
problem,

min
H≥0

||X − WH||2F, (1.2)

needs to be solved exactly or approximately. The most popular approaches
in the NMF community to solve it are multiplicative updates (Lee & Seung,
1999), active-set methods that solve equation 1.2 exactly (Kim & Park, 2008,
2011), projected gradient methods (Lin, 2007; Guan, Tao, Luo, & Yuan, 2012),
and exact block coordinate descent (BCD) methods (Cichocki, Zdunek, &
Amari, 2007; Cichocki & Phan, 2009; Hsieh & Dhillon, 2011; Gillis & Glineur,
2012; Chow, Wu, & Yin, 2017). Among these approaches, exact BCD schemes
have been shown to be the most effective in most situations (Kim, He, &
Park, 2014). The reason is that the optimal update of a single row of H, the
others being fixed, admits a simple closed-form solution: we have for all k
that

argminH(k,:)≥0||X − WH||2F

= max

(
0,

W (:, k)T (X − ∑
j �=k W (:, j)H( j, :))

||W (:, k)||22

)

= max

(
0,

W (:, k)TX − ∑
j �=k

(
W (:, k)TW (:, j)

)
H( j, :)

||W (:, k)||22

)
.

The algorithm using these updates is referred to as hierarchical alternating
least squares (HALS) and updates the rows of H and the columns of W in
a sequential way (Cichocki et al., 2007; Cichocki & Phan, 2009). HALS has
been improved in several ways:
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• Selecting the variable to be updated in order to reduce the objective
function the most (Gauss-Seidel coordinate descent; Hsieh & Dhillon,
2011).

• Updating the rows of H several times before updating W (and sim-
ilarly for the columns of W) as the computation of WTW and WTX
can be reused, which allows a significant acceleration of HALS (Gillis
& Glineur, 2012). This variant is referred to as accelerated HALS
(A-HALS).

• Using random shuffling instead of the cyclic updates of the rows
of H, which leads in general to better performances (Chow et al.,
2017). However, when combined with the above strategies to accel-
erate HALS, we have observed that the improvement is negligible.

More recently, HALS was also accelerated using randomized sampling
techniques (Erichson, Mendible, Wihlborn, & Kutz, 2018).

Although the acceleration scheme proposed in this letter can poten-
tially be applied to any NMF algorithm, we focus for simplicity on two
algorithms:

1. A-HALS, which is, as already explained, arguably one of the most
efficient NMF algorithms.

2. Alternating nonnegative least squares (ANLS), which is algorithm 1
where the NNLS subproblems 1.2 are solved exactly. To solve the
NNLS subproblems, we use the active-set method from Kim and
Park (2011), one of the most efficient strategy for NNLS (Kim et al.,
2014).

1.2 Outline of the Letter. We introduce a general framework to accel-
erate NMF algorithms. This framework, described in sections 2 and 3, is
closely related to the extrapolation scheme usually used in the context of
gradient descent methods. We use it here in the context of exact BCD meth-
ods applied to NMF. The difficulty in using this scheme is in choosing the
tuning parameters in the extrapolation, for which we propose a simple strat-
egy in section 4. We illustrate the effectiveness of this approach on synthetic,
image, and document data sets in section 5.

2 Acceleration through Extrapolation

We describe the simple extrapolation scheme that we will use to acceler-
ate NMF algorithms. This scheme takes its roots in the so-called method of
parallel tangents, which is closely related to the conjugate gradient method
(Luenberger & Ye, 2015), and the accelerated gradient schemes by Nesterov
(2013). The idea is the following. Let us consider an optimization scheme
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Figure 1: Illustration of the idea of extrapolation to accelerate optimization
schemes.

that computes the next iterate only based on the previous iterate1 (e.g., gra-
dient descent or coordinate descent), that is, it updates the kth iterate xk as
follows:

xk+1 = update(xk),

for some function update(.) that depend on the objective function and the
feasible set. For most first-order methods, these updates will have a zigzag-
ging behavior. In particular, gradient descent with exact line search leads to
orthogonal search directions (Luenberger & Ye, 2015), while search direc-
tions of (block) coordinate descent methods are orthogonal by construction.
The idea of extrapolation is to define a second sequence of iterates, namely,
yk with y0 = x0, and modify the above scheme as follows:

xk+1 = update(yk), yk+1 = xk+1 + βk(xk+1 − xk),

for some βk ≥ 0. Note that there are other possibilities for choosing yk+1
based on linear combinations of previous iterates. Figure 1 illustrates the
extrapolation scheme and allows us to get some intuition: the direction
(xk+1 − xk) will be in between zigzagging directions obtained with the orig-
inal update applied to yk’s and will allow us to accelerate convergence. For
example, we observe in Figure 1 that the direction xk+2 − xk+1 is between
the directions xk+1 − yk and xk+2 − yk+1.

In the case of gradient descent and smooth convex optimization, the
above scheme allows us to accelerate convergence of the function values
from O(1/k) to O(1/k2) and from linear convergence with rate (1 − μ/L) to
rate (1 − √

μ/L) for strongly convex function with parameter μ and whose

1
Although this assumption is not strictly necessary, it makes more sense; otherwise,

there might be a countereffect if the update already takes into account the previous
iterates.
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gradient has Lipschitz constant L (Nesterov, 2013). This scheme has also
been used for BCD, and most works focus on the case where the blocks of
variables are updated using a gradient or proximal step (see Beck & Tetru-
ashvili, 2013; Xu & Yin, 2013; Fercoq & Richtárik, 2015; Chambolle & Pock,
2015). In the convex case, the βk’s can be chosen a priori in order to obtain
the theoretical acceleration. However, from a practical point of view, the
acceleration will depend on the choice of the βk’s, which is nontrivial (see
Odonoghue & Candès, 2015, for a discussion about this issue). Extrapola-
tion has been used more recently in nonconvex settings (Xu & Yin, 2013;
O’Neill & Wright, 2017; Paquette, Lin, Drusvyatskiy, Mairal, & Harchaoui,
2018), but as far as we know, not in combination with exact BCD meth-
ods. Xu and Yin (2013) used extrapolation in the context of an inexact BCD
method where the blocks of variables are updated using a projected gra-
dient method. Their approach is different from ours, as we will use exact
BCD. Note that Xu and Yin (2013) applied their technique to NMF, which
we will compare to ours in section 5.

In the method of parallel tangents, the steps βk are computed using line
search (Luenberger & Ye, 2015). This allows the acceleration scheme to be
at least as good as the initial scheme. However, this is not a good strategy
in our case because the optimal βk’s will be close to zero (because we use
coordinate descent). In any case, the choice of the βk’s is nontrivial and, as
we will see, the acceleration depends on the choice of these parameters.
Note that choosing βk = 0 for all k gives back the original algorithm (no
extrapolation), and βk close to one is a very aggressive strategy.

The remainder of this letter is organized as follows:

• In section 3, we adapt the above extrapolation technique in the
context of two-block coordinate descent NMF algorithms (see algo-
rithm 1).

• In section 4, we propose a simple strategy for the choice of the pa-
rameters βk’s.

• In section 5, we illustrate the acceleration of NMF algorithms on syn-
thetic, image, and document data sets.

3 Extrapolation for NMF Algorithms

In this letter, we adapt extrapolation to the two-block coordinate descent
strategies of NMF algorithms described in algorithm 1. Algorithm 2 de-
scribes the proposed extrapolation scheme applied to NMF (see equation
1.1). Depending on the choice of the parameter hp ∈ {1, 2, 3}, algorithm 2
corresponds to three different variants of the proposed extrapolation. We
describe this through two important questions.

3.1 When Should We Perform the Extrapolation? In case of NMF (and
in general for BCD methods), it makes sense to perform the extrapolation
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scheme after the update of each block of variables so that when we update
the next block of variables, the algorithm takes into account the already
extrapolated variables (see Fercoq & Richtárik, 2015). However, as we will
see in the numerical experiments, this does not necessarily performs best
in all cases. This is the first reason that we have added a parameter hp ∈
{1, 2, 3}: For hp = 1, H is extrapolated after the update of W ; otherwise it is
extrapolated directly after it has been updated. Note that in the former case,
the extrapolated matrix Hy is used only as a warm start for the next NNLS
update of H. For ANLS, it will therefore not play a crucial role since ANLS
solves the NNLS subproblem exactly.

3.2 Can We Guarantee Convergence? Under some mild assumptions
or slight modifications of the algorithm, BCD schemes are guaranteed to
converge to stationary points (Hong, Wang, Razaviyayn, & Luo, 2017).
Since algorithm 2 uses extrapolation, we cannot use these results directly.
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Similarly, we cannot use the result of Xu and Yin (2013) with its projected
gradient steps to update W and H. In algorithm 2, because Wy and Hy are
not necessarily nonnegative, the objective function is not guaranteed to de-
crease at each step. In fact, step 16 of algorithm 2 only checks the decrease of
||X − WnHy||F where (Wn, Hy) is not necessarily feasible for hp ≥ 2. The rea-
son for computing ||X − WnHy||F and not ||X − WnHn||F is threefold. First,
Wn was updated according to Hy. Second, it gives the algorithm some de-
grees of freedom to possibly increase the objective function in the hope of
being able to decrease it significantly later. In fact, we have observed in our
numerical experiments that this choice allows a faster convergence than
when restarting the algorithm based on the error ||X − WnHn||F . Third, it is
computationally cheaper because computing ||X − WnHn||F would require
O(mnr) operations instead of O(mr2) (see remark 1).

In order to guarantee the objective function to decrease, a possible way is
to require Hy to be nonnegative by projecting it to the nonnegative orthant;
this variant corresponds to hp = 3. In that case, the solution (Wn, Hy) is a fea-
sible one for which the objective function is guaranteed to decrease at least
every second step. In fact, when the error increases, algorithm 2 reinitializes
the extrapolation sequence (Wy, Hy) using (W, H) (step 17 of algorithm 2),
and the next step is a standard NNLS update. Therefore, since the objective
function is bounded below, there exists a converging subsequence of the
iterates. Proving convergence to stationary points is an open problem and
an important direction for further research. We believe it would be particu-
larly interesting to investigate the convergence of the extrapolation scheme
applied on exact BCD in the nonconvex case.

To summarize, using the extrapolation of H after the update of W (hp =
1) or using the projection of Hy onto the feasible set (hp = 3) is more con-
servative but guarantees the objective function to decrease (at least every
second step). As we will see in the numerical experiments, these two vari-
ants perform in general better than with hp = 2.

Remark 1 (computation of the error). To compute the error ||X − WnHy||2F
in step 15 of algorithm 2 (and in step 1), it is important to take advantage of
previous computations and not compute WnHy explicitly (which would be
impractical for large and sparse matrices). For simplicity, we denote W =
Wn and H = Hy. We have

||X − WH||2F = 〈X, X〉 − 2〈X,WH〉 + 〈WH,WH〉
= ||X||2F − 2〈W, XHT〉 + 〈WTW, HHT〉.

The term ||X||2F can be computed once, the term 〈W, XHT〉 can be computed
in O(mr) operations since MHT is computed within the NNLS update of
W , and the term 〈WTW, HHT〉 requires O(mr2) since HHT is also computed
within the NNLS update of W . In fact, all algorithms for NNLS we know of
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need to compute XHT and HHT when solving for W because the gradient
of ||X − WH||2F with respect to W is 2(WHHT − XHT ).

Remark 2 (other NMF variants). Although we focus in this letter on the
most standard NMF model, equation 1.1, the acceleration scheme described
in algorithm 2 can be directly applied to any NMF model. The only mod-
ification to bring to the algorithm is in the way the matrices W and H are
updated in steps 3 and 10. For example, one of the most widely used reg-
ularizations in NMF is to add �1 norm penalty terms on W or H in the ob-
jective function (i.e., ||W ||1 and ||H||1), to enhance sparsity of the factors
(Kim & Park, 2008). In that case, both HALS and ANLS extend directly be-
cause the subproblems in variables W and H are still NNLS (in fact, W and
H are nonnegative; hence ||W ||1 and ||H||1 are linear terms). Another im-
portant example is to look for a matrix W whose columns have minimum
volume (Fu et al., 2018) for which Fu, Huang, Yang, Ma, and Sidiropoulos
(2016) used a similar extrapolation technique as Xu and Yin (2013) to accel-
erate significantly their inexact BCD algorithm.

4 Choice of the Extrapolation Parameters βk’s

In this section, we propose a strategy to choose the βk’s. First, we explain
why it does not work well to use line search. We focus on the update of W
(a similar argument holds for H). We have

Wy = Wy(β ) = Wn + β(Wn − W ),

where Wn is an approximate solution of minW≥0 ||X − WHy||F (in the case
of ANLS, it is an optimal solution). The optimal β can be computed in close
form as follows:

β∗ = argminβ ||X − Wy(β )Hy||2F = 〈X − WnHy, (Wn − W )Hy〉
||(Wn − W )Hy||2F

.

We have observed that β∗ is close to zero for most steps of algorithm 2 (β∗ is
not always close to zero, even when using ANLS, because Wy is not neces-
sarily nonnegative), especially when the algorithm has performed several
iterations and reached the neighborhood of a stationary point. The reason is
that Wn was optimized to minimize the objective function. Hence, in the fol-
lowing, we propose another strategy to choose the βk’s. It will increase the
objective function in most cases (i.e., ||X − Wy(β )Hy||2F > ||X − Wy(0)Hy||2F)
but will allow a larger decrease of the objective function at the next step.
Note that this is the reason why we check whether the error has decreased
only after the update of H because otherwise, the acceleration would not be
possible (only a small β would be allowed in that case).
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4.1 Strategy for Updating the βk’s. In this letter, since we are apply-
ing the extrapolation scheme to a nonconvex problem using coordinate de-
scent, there is, as far as we know, no a priori theoretically sound choice for
the βk’s. For this reason, we consider a very simple scheme described in
algorithm 3.

It works as follows. Let us assume there exists a hidden optimal value for
the βk’s, as in the strongly convex case where βk should ideally be equal to
1−√

μ/L
1+√

μ/L (Nesterov, 2013; Odonoghue & Candès, 2015), where μ is the strong
convexity parameter of the objective function and L is the Lipschitz con-
stant of its gradient. It starts with an initial value of β0 ∈ [0, β̄] and an upper
bound β̄ = 1. As long as the error decreases, it increases the value of βk+1 by
a factor γ , taking into account the upper bound, that is, βk+1 = min(γβk, β̄ ).
It also increases the upper bound by a factor γ̄ < γ if it is smaller than one,
that is, β̄ = min(γ β̄, 1). The usefulness of β̄ is to keep in memory the last
value of βk that allowed a decrease of the objective function, which is used
as an upper bound for βk. However, because the landscape of the objective
function may change, β̄ is slightly increased by a factor γ̄ < γ at each step,
as long as the error decreases. When the error increases, βk+1 is reduced by
a factor η > γ , and the upper bound β̄ is set to the previous value of β that
allowed decrease, that is, βk−1.

Remark 3. We have also tried to mimic the choice of the βk’s from convex
optimization (Nesterov, 2013), but in general, it performed worse than the
simple choice presented here.
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Table 1: Image Data Sets.

Name Number of Pixels m n r

ORLa 112 × 92 10304 400 40
Umistb 112 × 92 10304 575 40
CBCLc 19 × 19 361 2429 40
Freyb 28 × 20 560 1965 40

ahttp://www.cl.cam.ac.uk/research/dtg/attarchive
/facedatabase.html.
bhttp://www.cs.toronto.edu/∼roweis/data.html.
chttp://cbcl.mit.edu/software-datasets/FaceData2
.html.

Table 2: Text Mining Data Sets from Zhong and Ghosh (2005).

Name m n r Number of Nonzero Sparsity

Classic 7094 41,681 20 223,839 99.92
Sports 8580 14,870 20 1,091,723 99.14
Reviews 4069 18,483 20 758,635 98.99
Hitech 2301 10,080 20 331,373 98.57
Ohscal 11,162 11,465 20 674,365 99.47
la1 3204 31,472 20 484,024 99.52

Note: Sparsity is given in %: 100 ∗ #zeros/(mn)).

5 Numerical Experiments

In this section, we show the efficiency of the extrapolation scheme, that is,
algorithm 2, to accelerate the NMF algorithms ANLS and A-HALS. All tests
are preformed using Matlab R2015a on a laptop Intel CORE i7-7500U CPU
at 2.9 GHz 24 GB RAM. (The code is available from https://sites.google
.com/site/nicolasgillis/code.)

5.1 Data Sets. We will use the same data sets as in Gillis and Glineur
(2012) because they are among the most widely used ones in the NMF liter-
ature (see Tables 1 and 2). The image data sets represent facial images and
are dense matrices. The document data sets are sparse matrices.

We also consider two types of synthetic data sets. For the first one, which
we refer to as the low-rank synthetic data set, we generate each entry of
W and H using the uniform distribution in [0, 1] and compute X = WH.
For each experiment, we generate 10 such matrices and report the aver-
age results. For the second one, which we refer to as the full-rank syn-
thetic data set, we simply generate each entry of X uniformly at random in
[0,1] so that X is a full rank matrix. In both cases, we use m = n = 200 and
r = 20.

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cs.toronto.edu/roweis/data.html
http://cbcl.mit.edu/software-datasets/FaceData2.html
https://sites.google.com/site/nicolasgillis/code
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5.2 Experimental Setup. In all cases, we report the average error over 10
random initializations, where the entries of the initial matrices W and H are
chosen uniformly at random in the interval [0, 1]. To compare the solutions
generated by the different algorithms, we follow the strategy from Gillis
and Glineur (2012): we report the relative error to which we subtract the
lowest relative error obtained by any algorithm with any initialization (de-
noted emin). Mathematically, given the solution (W (k), H(k) ) obtained at the
kth iteration, we report

E(k) = ||X − W (k)H(k)||F
||X||F − emin. (5.1)

For the low-rank synthetic data sets, we use emin = 0.
Using E(k) instead of ||X − W (k)H(k)||F has some advantages: (1) it allows

meaningfully taking the average results over several data sets, and (2) it
provides a better visualization in terms of both initial convergence and the
quality of the final solutions computed by the different algorithms. The rea-
son is that E(k) converges to zero for the algorithm that was able to compute
the best solution, which allows us to use a logarithmic scale.

5.3 Tuning Parameters: Preliminary Numerical Experiments. Before
we compare the two NMF algorithms (ANLS and A-HALS) and their ex-
trapolated variants, we run some preliminary numerical experiments in or-
der to choose reasonable values for the parameter of algorithm 2 (hp) and
the parameters to update βk.

As we will see, the extrapolation scheme performs rather differently for
ANLS (it computes an optimal solution of the subproblems) and A-HALS (it
computes an approximate solution using a few steps of coordinate descent).
It also performs rather differently depending on the value of hp, and it is less
sensitive to the values of β0, γ , γ̄ , and η as long as these values are chosen
in a reasonable range.

In the next section, we run the different variants with the following
parameters: β0 = 0.25, 0.5, 0.75, η = 1.5, 2, 3, (γ , γ̄ ) = (1.01, 1.005), (1.05,

1.01), (1.1, 1.05). For each experiment, we will not be able to display the
curve for each extrapolated variant (there would be too many—82 in total:
34 and the original algorithm). Therefore, for each value of hp, we display
only the variant corresponding to the parameters that obtained the small-
est final average error (best) and the largest final average error (worst). This
will be interesting to observe the sensitivity of algorithm 2 to the way βk is
updated.

5.3.1 Extrapolated ANLS (E-ANLS). The top two plots of Figure 2 show
the evolution of the average of the error measure defined in equation 5.1 for
the low-rank and full-rank synthetic data sets. We observe the following:
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Figure 2: Extrapolation scheme applied to ANLS on the low-rank (top left) and
full-rank (top right) synthetic data sets and the image (bottom left) and docu-
ment (bottom right) real data sets. For each value of hp, we display the corre-
sponding best- and worst-performing variant. The curves are the average value
of equation 5.1 among the different data sets and initializations.

• For all the values of the parameters, E-ANLS outperforms ANLS.
• For the low-rank synthetic data sets, E-ANLS with hp = 1 and well-

chosen parameters for the update of βk (e.g., β0 = 0.5, η = 1.5, γ =
1.1) performs extremely well and is able to identify solutions with
very small relative error (≈10−8 in average). In fact, the original ANLS
algorithm would not be able to compute such solutions even within
several thousand iterations.

• For the full-rank synthetic data sets, E-ANLS variants with hp equal to
1, 2, or 3 perform similarly, although choosing hp = 1 allows a slightly
faster initial convergence.
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• The best value for γ is either 1.05 or 1.10. The best value for η is either
1.5 or 2.0 (3.0 is always the worst). The algorithm is not too sensitive
to the initial β, as it is quickly modified within the iterations, but β0 =
0.25 clearly provides the worst performance in most cases.

We now perform the same experiment on image and document data sets
except with fewer parameters (we do not use γ = 1.01, η = 3, β0 = 0.25) in
order to reduce the computational load. The bottom two plots of Figure 2
show the evolution of the average of the error measure defined in equation
5.3 for the image and document data sets.

We observe the following:

• As for synthetic data sets, E-ANLS outperforms ANLS for all the val-
ues of the parameters.

• Since we have removed the values of the parameters performing
worst, the gap between the best and worst variants of E-ANLS is
reduced.

• For the image data sets, the variant with hp = 1 performs best, al-
though the variants with hp = 2, 3 do not perform much worse.

• For the document data sets, the variants with hp = 2, 3 perform best
(in terms of final error). This can be explained by the fact that NMF
problems for sparse matrices are more difficult, as there are more
local minima with rather different objective function values (see
section 5.4.3 for more numerical experiments). Hence, the final error
reports the algorithm that found the best solution in most of the 60
cases (6 data sets, 10 initializations per data set). In terms of speed
of convergence, most E-ANLS variants behave similarly (converg-
ing within 80 iterations, while ANLS has not converged within 100
iterations).

In the final numerical experiments, we will use β0 = 0.5, η = 1.5 and
(γ , γ̄ ) = (1.1, 1.05) for E-ANLS. We will keep both variants hp = 1, 3.

5.3.2 Extrapolated A-HALS (E-A-HALS). The top two plots of Figure 3
show the evolution of the average of the error measure defined in equa-
tion 5.3 for the low-rank and full-rank synthetic data sets. For these ex-
periments, we have also tested the value (γ , γ̄ ) = (1.005, 1.001) (as we will
see, that smaller value of these parameters perform better). We observe the
following:

• For the low-rank synthetic data, with hp = 2, 3 and well-chosen pa-
rameters for the update of β (e.g., β0 = 0.50, η = 1.5, γ = 1.01), E-A-
HALS performs much better than A-HALS. (Note, however, that it is
not able to find solutions with error as small as E-ANLS within 500
iterations.)
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Figure 3: Extrapolation scheme applied with A-HALS on the low-rank (top left)
and full-rank (top right) synthetic data sets and on the image (bottom left) and
document (bottom right) data sets. For each value of hp, we display the corre-
sponding best- and worst-performing variant.

• For the full-rank synthetic data, the variant with hp = 1 performs
slightly better, although the final solutions of the three extrapolated
variants have similar error.

• The best value for γ is either 1.01 or 1.05, smaller than for E-ANLS.
This can be explained by the fact that A-HALS does not solve the
NNLS subproblems exactly, and the extrapolation should not be as
aggressive as for ANLS. As for E-ANLS, E-HALS is not too sensitive
to the parameters η and β0.

We now perform the same experiment on image and document data
sets except with fewer parameters (we do not test γ = 1.005, 1.1, η = 3,
β0 = 0.25). The bottom two plots of Figure 3 show the evolution of the error



Accelerating Nonnegative Matrix Factorization Algorithms 431

Figure 4: Average value of the error measure, equation 5.3, of ANLS, A-HALS,
and their extrapolated variants applied on low-rank (left) and full-rank (right)
synthetic data sets.

measure defined in equation 5.3 for the image and document data sets. We
observe the following:

• For the image data sets, the variant hp = 1 performs worse than hp =
2, 3, which perform similarly (in terms of speed of convergence).

• For the document data sets, we observe similar behavior as for ANLS:
all extrapolated variants converge much faster than HALS, but they
converge to different solutions (being on average less than 0.1% away
from the lowest relative error).

In the final numerical experiments, we use β0 = 0.5, η = 1.5, and (γ , γ̄ ) =
(1.01, 1.005) for E-A-HALS. We keep both variants hp = 1, 3.

5.4 Extensive Numerical Experiments and Comparison of E-ANLS
and E-HALS. We now compare ANLS, A-HALS and their extrapolated
variants on the same data sets. We also compare these algorithms with the
extrapolated alternating projected gradient method for NMF proposed by
Xu and Yin (2013) and referred to as APG-MF.

5.4.1 Synthetic Data Sets. Figure 4 displays the evolution of the average
error for the low-rank and full-rank synthetic data sets, where the NMF
algorithms were run for 15 seconds. Table 3 (resp. 4) reports the average
error, standard deviation, and a ranking among the final solutions obtained
by the different algorithms for the low-rank (resp. full-rank) synthetic data
sets.

For low-rank synthetic data sets, these results confirm what we have ob-
served previously: E-ANLS (hp = 1) is able to significantly accelerate ANLS
and obtain solutions with very small error extremely fast (in less than 4 sec-
onds). The acceleration of HALS is not as important, but it is significant.
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Table 3: Comparison of the Final Relative Error Obtained by the NMF Algo-
rithms on the Low-Rank Synthetic Data Sets: Average Error, Standard Devia-
tion, and Rankings among the 100 Runs (100 Data Sets).

Algorithm Mean ± SD Ranking

ANLS 5.612 10−5 ± 7.414 10−5 (0, 0, 0, 3, 7, 40, 50)
E-ANLS (hp = 1) 2.618 10−8 ± 3.657 10−8 (96, 4, 0, 0, 0, 0, 0)
E-ANLS (hp = 3) 1.207 10−6 ± 1.162 10−5 (67, 24, 7, 1, 1, 0, 0)
A-HALS 4.547 10−5 ± 6.299 10−5 (1, 0, 0, 4, 10, 41, 44)
E-A-HALS (hp = 1) 7.825 10−6 ± 1.531 10−5 (3, 0, 6, 31, 41, 13, 6)
E-A-HALS (hp = 3) 1.181 10−7 ± 3.679 10−7 (48, 8, 37, 7, 0, 0, 0)
APG-MF 2.032 10−6 ± 5.770 10−6 (0, 0, 3, 50, 41, 6, 0)

Notes: The ith entry of the vector indicates the number of times the
algorithm generated the ith best solution. Observe that all algorithms
are able to compute the best solution at least a few times; this happens
when they compute an exact solution with X = WH. Numbers in bold
indicate the best performance on average.

Table 4: Comparison of the Final Relative Error Obtained by the NMF Algo-
rithms on the Full-Rank Synthetic Data Sets: Average Error, Standard Deviation,
and Rankings among the 100 Runs (10 Data Sets, 10 Initializations Each).

Algorithm Mean ± SD Ranking

ANLS 0.423858 ± 1.183 10−3 (4, 9, 9, 12, 22, 21, 23)
E-ANLS (hp = 1) 0.423795 ± 1.161 10−3 (16, 18, 18, 9, 15, 10, 14)
E-ANLS (hp = 3) 0.423787 ± 1.158 10−3 (18, 11, 17, 21, 16, 9, 8)
A-HALS 0.423815 ± 1.171 10−3 (18, 12, 11, 18, 13, 13, 15)
E-A-HALS (hp = 1) 0.423790 ± 1.162 10−3 (17, 17, 16, 17, 15, 10, 8)
E-A-HALS (hp = 3) 0.423817 ± 1.184 10−3 (12, 14, 16, 11, 11, 22, 14)
APG-MF 0.423808 ± 1.183 10−3 (16, 18, 13, 12, 8, 15, 18)

Notes: The ith entry of the vector indicates the number of times the algo-
rithm generated the ith best solution. The numbers in bold indicate the
best performance on average.

E-ANLS (hp = 1) is able to obtain the best solutions in 96 of the 100 runs
while always being among the two best, while ANLS and A-HALS are
among the worst ones in most cases. APG-MF never generates the best or
the second-best solution.

For full-rank synthetic data sets, we observe that all algorithms obtain a
similar final relative error (see Table 4), all of them being on average around
0.01% away from the best solution, and there is no clear winner between
the extrapolated variants. In fact, there is a priori no reason to believe that
an algorithm will converge to a better solution in general as NMF is a dif-
ficult nonconvex optimization problem (Vavasis, 2010). In terms of speed
of convergence, E-A-HALS variants converge the fastest (about 3 seconds),
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Figure 5: Average value of the error measure, equation 5.1, of ANLS, A-HALS,
and their extrapolated variants applied on the four image data sets: CBCL (top
left), Umist (top right), ORL (bottom left), Frey (bottom right).

followed by APG-MF (about 4 seconds) and the E-ANLS variants (about 8
seconds), while A-HALS and ANLS require more than 20 seconds.

5.4.2 Dense Image Data Sets. We now run the algorithms for 200 seconds
on the four image data sets (see Figure 5, which displays the evolution of the
average error measure, equation 5.1, for each data set, and Table 5, which
compares the final errors obtained by the different algorithms.

We observe the following:

• E-A-HALS (hp = 3) has the fastest initial convergence speed, fol-
lowed by E-ANLS variants and APG-MF. As in the preliminary
numerical experiments, E-A-HALS (hp = 1) is able to accelerate A-
HALS but not as much as E-A-HALS (hp = 3).

• In terms of final error, there is no clear winner between the extrapo-
lated variants (similarly as for the full-rank synthetic data sets), while
ANLS clearly performs the worst.
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Table 5: Comparison of the Final Relative Error Obtained by the NMF Algo-
rithms on the Image Data Sets: Average Error, Standard Deviation and Rankings
among the 40 Runs (4 Data Sets, 10 Initializations Each).

Algorithm Mean ± SD Ranking

ANLS 0.110703 ± 2.964 10−2 (3, 3, 3, 5, 5, 8, 13)
E-ANLS (hp = 1) 0.110547 ± 2.958 10−2 (9, 12, 7, 5, 4, 2, 1)
E-ANLS (hp = 3) 0.110570 ± 2.956 10−2 (9, 6, 5, 7, 2, 8, 3)
A-HALS 0.110690 ± 2.956 10−2 (1, 4, 4, 2, 3, 13, 13)
E-A-HALS (hp = 1) 0.110634 ± 2.958 10−2 (4, 2, 2, 4, 17, 7, 4)
E-A-HALS (hp = 3) 0.110552 ± 2.956 10−2 (5, 10, 11, 8, 3, 0, 3)
APG-MF 0.110559 ± 2.956 10−2 (9, 3, 8, 9, 6, 2, 3)

Notes: The ith entry of the vector indicates the number of times
the algorithm generated the ith best solution. The numbers in bold
indicate the best performance on average.

To conclude, we see that the extrapolation scheme is particularly
beneficial to ANLS, which is significantly accelerated, and even able to
outperform E-A-HALS in some cases (while A-HALS performs in general
much better than ANLS, as already pointed out in Gillis & Glineur, 2012).
Although APG-MF outperforms ANLS (as already observed by (Xu & Yin,
2013)) and A-HALS, it is in general outperformed by the other extrapolated
variants.

5.4.3 Sparse Document Data Sets. We now run the algorithms for 200 sec-
onds on the six document data sets. Figure 6 displays the evolution of the
average error measure, equation 5.1, for each data set, and Table 6 compares
the final errors obtained by the different algorithms.

We observe the following:

• E-A-HALS variants have the fastest initial convergence speed con-
verging on average in about 10 seconds, followed by A-HALS, which
sometimes takes much more time to stabilize (e.g., more than 50 sec-
onds for the classic data set). APG-MF does not converge as fast as
E-A-HALS variants. E-ANLS variants converge much faster than
ANLS but sometimes take more than 30 seconds to stabilize.

• In terms of final error, there is no clear winner, although A-HALS and
E-A-HALS (hp = 3) most of the time give the best solution (15 our of
60 cases). APG-MF tends to generate the worst solutions (17 out of
the 60 cases) and performs similarly as ANLS in this respect.

For sparse data sets, E-A-HALS is the best option for which both vari-
ants (hp = 1, 3) perform similarly. APG-MF and ANLS and its extrapolated
variants are less effective in this case.
Remark 4 (choice of hp). At this point, we do not have a good theoretical
understanding to justify the choice of hp. From the numerical experiments,
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Figure 6: Average value of the error measure, equation 5.1, of ANLS, A-HALS,
and their extrapolated variants applied on the six documents data sets: Classic
(top left), Sports (top right), Reviews (middle left), Hitech (middle right), ohscal
(bottom left), la1 (bottom right).

it is clear that hp = 2 should be avoided as it performs in most cases worse
than hp = 1, 3 while being a more aggressive variant (no projection and ex-
trapolation after the update of both W and H; see sections 5.1 and 5.2). Com-
paring hp = 1 and hp = 3, there is no clear winner, and performance varies
from one experiment to another. Understanding this behavior and possibly
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Table 6: Comparison of the Final Relative Error Obtained by the NMF Algo-
rithms on the Document Data Sets: Average Error, Standard Deviation, and
Rankings among the 60 Runs (6 Data Sets, 10 Initializations Each).

Algorithm Mean ± SD Ranking

ANLS 0.850433 ± 3.186 10−2 (5, 3, 12, 6, 9, 11, 14)
E-ANLS (hp = 1) 0.850417 ± 3.187 10−2 (7, 8, 6, 12, 13, 12, 2)
E-ANLS (hp = 3) 0.850324 ± 3.189 10−2 (9, 11, 6, 9, 15, 6, 4)
A-HALS 0.850232 ± 3.198 10−2 (15, 11, 9, 8, 7, 7, 3)
E-A-HALS (hp = 1) 0.850287 ± 3.198 10−2 (13, 13, 12, 6, 7, 6, 3)
E-A-HALS (hp = 3) 0.850281 ± 3.204 10−2 (15, 11, 11, 4, 5, 9, 5)
APG-MF 0.850471 ± 3.183 10−2 (5, 5, 9, 10, 5, 9, 17)

Note: The ith entry of the vector indicates the number of times the
algorithm generated the ith best solution.

designing a better strategy (e.g., using a hybridization) is a topic for further
research.

6 Conclusion

In this letter, we have proposed an extrapolation scheme for NMF algo-
rithms to significantly accelerate their convergence. We have focused on
two state-of-the-art NMF algorithms: ANLS (Kim & Park, 2011) and A-
HALS (Gillis & Glineur, 2012). The main conclusions are the following:

• In all cases, the extrapolated variants significantly outperform the
original algorithms.

• For randomly generated low-rank matrices, E-ANLS, the extrapo-
lated variant of ANLS, allows a significant acceleration; it is able to
compute solutions with very small relative errors (≈10−8) in all cases,
while the other approaches fail to do so.

• For dense data sets, E-ANLS and E-A-HALS perform similarly, al-
though A-HALS performs much better than ANLS. This is interest-
ing: the extrapolated variants allowed ANLS to get back on A-HALS.

• For sparse data sets, E-A-HALS performs the best and should be pre-
ferred to the other variants.

• The extrapolated projected gradient method proposed by Xu and Yin
(2013) and referred to as APG-MF performs well but does not perform
as well as the extrapolated variants proposed in this letter.

This work was mostly experimental. It would be crucial to understand
the extrapolation scheme better from a theoretical point of view. In partic-
ular, can we prove convergence to a stationary point as done in Xu and Yin
(2013)? And can we quantify precisely the acceleration as it has been done
in the convex case? Further work also includes the use of extrapolation in
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other settings, such as NMF with other objective functions such as the β

divergences (Févotte & Idier, 2011), nonnegative tensor factorization (NTF;
Cichocki et al., 2009) and symmetric NMF (Vandaele, Gillis, Lei, Zhong, &
Dhillon, 2016).
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